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Zalán Forró, ETH Zürich
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Abstract

The efficient optimization of portfolios with a large number of instruments and scenarios as well

as the adequate modeling of utility functions, risks, and constraints are the basic requirements

of portfolio optimization. The development of optimization techniques has come a long way.

Traditional portfolio theory lacks on the assumption of normal distributed returns, which is

not the case in financial markets, and current finance regulations require a risk management

that focuses on tail risk, which is difficult to handle in portfolio optimization. An approach of

Rockafellar and Uryasev that uses a technique, where Value-at-Risk and Conditional Value-at-

Risk are optimized simultaneously, overcomes these issues. The current thesis elaborates the

portfolio optimization approach of Rockafellar and Uryasev step by step and describes how it

can be implemented with linear programming. The implemented approach is tested in Matlab

with a portfolio composed of different asset classes to demonstrate how the optimization works

in practice. In addition, an IT architecture is proposed to efficiently manage the simultaneous

optimization of large portfolios with a large number of scenarios in a multi-user environment to

support a sophisticated investment process.
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Chapter 1

Introduction

1.1 Background

The development of optimization approaches is of major concern for quantitative research de-

partments. Their aim is to provide an optimization approach, which is broadly accepted and

used in the portfolio management business, in order to allocate portfolios according to the spec-

ified risk. Therefore, the risks of financial markets need to be estimated properly and controlled

to provide reliable and stable solutions. The best-known portfolio optimization approach was

introduced by Markowitz [16] when he published his seminar paper about Portfolio Selection

in 1952. However, his approach has important downsides: It uses volatility to measure risk

which is only ideal for normal distributions and it penalizes losses equally to returns of the same

magnitude. The recent past shows that financial markets, especially during crises, do not follow

the logic of normal distributed returns, which results in a misinterpretation of the underlying

portfolio risks.

Nowadays, the trend is to use downside risk measures such as Value-at-Risk1 (VaR) or Con-

ditional Value-at-Risk2 (CVaR) for portfolio optimization because finance regulations, such as

Basel III3, formulate some of the risk management requirements in terms of percentiles of return

distributions. However, due to the characteristics of such downside risk measures, optimization

approaches based on these measures are not very convenient to use, do not scale well, and can

also lead to sub-optimal portfolio allocations.

1Value-at-Risk is the worst loss over a certain period of time which will not be exceeded with a certain level
of confidence [14].

2Conditional Value-at-Risk is the average loss given that the loss is greater than VaR with a certain level of
confidence [20].

3Basel III is a global, voluntary regulatory standard on bank capital adequacy, stress testing and market
liquidity risk. It was supposed to strengthen bank capital requirements by increasing bank liquidity and decreasing
bank leverage.

1



2 Chapter 1 Introduction

1.2 Aim and Purpose

The aim of the present thesis is to provide an implementation guide to optimize portfolios for

constrained shortfall risk as well as a proposal for an IT architecture, which is able to efficiently

manage the simultaneous optimization of very large portfolios in a multi-user environment, inte-

grated in an established investment process. The task was initiated by the team of Quantitative

Research at the department of Private Banking and Wealth Management of Credit Suisse. They

requested a portfolio optimization approach to minimize shortfall risk either by an analytical

or an empirical method.

1.3 Methodology

The current thesis is mainly based on the optimization approach of Rockafellar and Uryasev

[20] which focuses on minimizing Conditional Value-at-Risk. Central to their approach is that

they derived a function for CVaR which is independent of the VaR function. This means

that VaR does not have to be calculated first, but it will be calculated as side-effect of the

CVaR optimization. Another major benefit of the approach is that it can be used for any

distribution and that it can be implemented by linear programming. This stimulates the two

basic requirements of portfolio optimization: (1) adequate modeling of utility functions, risks

and constraints and (2) the ability to handle large number of instruments and scenarios.

Firstly, concepts and methods of traditional portfolio theory are analyzed. Therefore, the dis-

tributions of returns in financial markets are studied as well as volatility and VaR in the context

of a coherent risk measure framework, and their issues for optimization techniques are clarified.

Secondly, the portfolio optimization approach of Rockafellar and Uryasev [20] is elaborated and

implemented in Matlab with linear programming techniques as proof of concept. The imple-

mentation is used to test the approach as well as to analyze the results on a portfolio composed

of different asset classes. Thirdly, an IT architecture illustrates the integration of the elab-

orated approach of Rockafellar and Uryasev [20] into an established investment process of a

bank. Thus, the corresponding portfolio management process is described. It is demonstrated

how the target system is used by different user roles to represent the defined process of portfolio

management with mean-variance as well as with the optimization approach of Rockafellar and

Uryasev [20]. Finally, the functionality of the system components and the required interfaces

are highlighted.
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1.4 Scope

The major focus of the present thesis is on the core concept of the approach of Rockafellar

and Uryasev [20]. It is shown how it can be implemented with linear programming to optimize

portfolios with constraints on CVaR as well as lower and upper bounds to define minimum and

maximum weights for the underlying assets in the portfolio. The approach is also designed to

have additional constraints for transaction costs and liquidity. However, these constraints are

not part of the implementation in the current thesis. The IT architecture is considered to be a

concept of how the optimization approach can be applied in an IT system landscape. There is

no analysis about the performance of such a system in the scope of the present thesis.

1.5 Target Audience

Due to the methodology based on a theoretical background with focus on a practical solution,

the target audience is:

• Quantitative Analysts

• Risk Managers

• Portfolio Managers

• IT Architects and Engineers

• Students with basic knowledge in statistics and mathematical finance

1.6 Thesis Structure

The thesis is structured into the following seven chapters:

• Chapter 1 describes the background of portfolio optimization, introduces the used method-

ology and the aim and purpose of the thesis. In addition, the scope as well as the target

audience are defined.

• Chapter 2 presents an overview of the core concepts of portfolio theory, and answers the

question of which properties are needed to fulfill the requirements for a coherent risk mea-

sure. It also contains a description of volatility and illustrates its limitations. Furthermore,

downside risk measures are introduced and it is discussed why CVaR is the preferred risk

measure for portfolio optimization. Finally, the basic concepts of portfolio optimization

are explained, and the limitations of the mean-variance approach are discussed.
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• Chapter 3 is the main chapter of the thesis. It contains the elaboration of the Rockafellar

and Uryasev approach to optimize portfolios with CVaR constraints and how it can be

implemented with linear programming.

• Chapter 4 presents two methods to simulate correlated future asset prices.

• Chapter 5 contains the results of the implemented optimization approach, tested with a

portfolio of different asset classes. The two different methods of Chapter 4 are used to

simulate scenarios.

• Chapter 6 describes an IT architecture inside an investment process, which supports the

portfolio management to use traditional mean-variance optimization and the optimization

with constrained shortfall risk.

• Chapter 7 concludes the present thesis by emphasizing important findings and provides

an outlook for further research of this topic.



Chapter 2

Portfolio Theory

This chapter provides an overview of the theory behind returns, their distributions, and the

concept of Markowitz’ mean-variance portfolio optimization. In addition, we look at the limita-

tions of volatility as risk measure, the issues of Value-at-Risk, and the advantages of Conditional

Value-at-Risk for portfolio optimization.

2.1 Assets and Portfolios

A financial asset is an intangible asset that represents a claim on future cash flows. Another

term used for a financial asset is financial instrument. It is often referred to certain types of

financial instruments as securities. For every financial instrument there is a minimum of two

parties. The party that has agreed to make future cash payments is called the issuer; the party

that owns the financial instrument and, therefore, the right to receive the payments made by

the issuer is called the investor [7]. Typically, financial assets are traded on financial markets.

Examples of financial assets are:

• Equities

• Bonds (e.g., corporate bonds, government bonds)

• Cash (e.g., US treasury bills)

• Derivatives (e.g., options, futures, forwards, swaps)

• Funds (e.g., mutual funds, hedge funds, ETF)

A portfolio can be defined by positions with a certain number of constituent assets [14].

5



6 Chapter 2 Portfolio Theory

2.2 Return

In the context of portfolio theory, a return is a gain of a financial asset or a portfolio in a

particular period. Thus, a loss within a particular period is a negative return for the same time

range. Returns and losses are usually quoted as a percentage. As a general rule, one can say

that the more risk someone takes, the greater the potential for a higher return, but also for a

higher loss. The definition for a return Rt over a single period t is

Rt =
Pt − P0

P0
, (2.1)

where

• Pt is the price of the asset at the end of the period, and

• P0 is the price of the asset at the begin of the period.

Expressed in logarithm terms, the return Rt can be described as

Rt(log) = log(
Pt
P0

). (2.2)

2.2.1 Expected Return

The expected return defines how big or small the return or the loss will be in the future. The

best unbiased estimate for the expected return E(R) under the efficient market hypothesis is

the mean of the historical returns

E(R) =
1

N

N∑
i=1

Ri, (2.3)

where Ri is the return for a specific time and N is the number of time steps (e.g., trading days).

The expected return on a portfolio of assets E(Rp) over a specific time period is a weighted

average of the returns on the individual assets in the portfolio [4, 7], and can be calculated in

the following way:

E(Rp) = w1 ∗R1 + w2 ∗R2 + . . .+ wN ∗RN , (2.4)

where w1, . . . , wN are the asset weights in the portfolio and R1, . . . , RN are the expected rates

of return for the different assets.
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As an example for a simple portfolio of two assets, the first asset is a stock of a company and

the second is a government bond. If we expect the stock asset to return 10% and the bond asset

to return 6%, and the allocation to the stock asset is 30% and to the bond asset 70%, we have

an expected return of the portfolio of 7.2% calculated with the following formula:

E(Rp) = (0.3) ∗ (0.1) + (0.7) ∗ (0.06) = 0.072 (2.5)

The expected return does not guarantee a rate of return. However, it is an established forecast to

estimate the future value of portfolios and, in addition, it provides a measure of actual returns.

2.2.2 Distribution of Returns

2.2.2.1 Normal Distributions

As shown in Figure 2.1 and Figure 2.2, the normal distribution is a symmetric distribution

where outcomes above and below the expected value are equally likely [7]. The corresponding

probability density function is defined as

φ(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 . (2.6)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Normal Distribution − Probability Density Function

φ 
(x

)

x

 

 

µ = 0.0 σ = 0.5
µ = 0.0 σ = 1.0
µ = 0.0 σ = 2.0
µ =−2.0 σ = 0.7

Figure 2.1: Probability density function (PDF) for the normal distribution with different
values for mean µ and standard deviation σ. Due to the symmetry of the distribution, outcomes
above and below the mean µ are equally likely.
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The cumulative distribution function of the normal distribution is the integral

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt. (2.7)

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Normal Distribution − Cumulative Distribution Function

Φ
 (

x)

x

 

 

µ = 0.0 σ = 0.5
µ = 0.0 σ = 1.0
µ = 0.0 σ = 2.0
µ =−2.0 σ = 0.7

Figure 2.2: Cumulative distribution function (CDF) for the normal distribution with different
values for mean µ and standard deviation σ.

There are empirical studies of real-world financial markets as well as theoretical arguments that

argue that the normal distribution as a model for asset returns is not a good assumption4.

2.2.2.2 Real World Distributions

In the real world, many non-normal distributions can be observed. These distributions are

characterized by a skewness and a kurtosis different from 0. Skewness is a measure of symmetry,

more precisely, the greater the skewness the greater the lack of symmetry [6]. It is known as

the third empirical moment. As shown in Figure 2.3, negative skews (skewed left) have a longer

left tail and the mass of the distribution is concentrated on the right of the figure. On the other

other hand positive skews (skewed right) have a longer right tail and the mass of the distribution

is concentrated on the left of the figure. Investors prefer positive skews – they dislike negative

returns more than they like the same level of positive returns. The skewness sk is defined as

sk =
1

N − 1

N∑
i=1

(xi − µ)3

σ3
, (2.8)

4For a review of the empirical evidence see Svetlozar T. Rachev, Christian Menn, and Frank J. Fabozzi,
Fat-Tailed and Skewed Asset Return Distributions: Implications for Risk Management, Portfolio Selection [19].
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where µ is the mean, σ the standard deviation, and N the number of data points (xi, . . . , xN ).

26 • Banker’s Business • Asset Allocation

This means that models should attach higher prior-
ity to avoiding losses.
 How can these two issues be addressed system-
atically? First, today’s models are more likely to ac-
count for non-normal distributions, with not only 
mean values and standard deviations being used as 
defining parameters, but also asymmetry and kurto-
sis. This gives investors a more accurate picture of 
reality – which, indeed, is the ultimate goal of any 
model, whether on the stock exchange or in a factory.
 Second, a new measure of risk addresses the risk 
issue. Whereas Markowitz’s theory focused on vola-
tility, today greater emphasis is placed on modeling 
the risk of loss – which can be expressed mathemat-
ically by the Conditional Value at Risk (CVaR). CVaR 
examines more closely the frequency of extreme 
events within the distribution, and makes it possible 
to estimate the magnitude of the average expected 
loss. In other words, CVaR specifies the average 
potential for loss in the case of extreme losses.

Minimizing Extreme Losses
This information forms the basis of a different kind of 
portfolio optimization that specifically minimizes the 
expected average risk of loss. This is important par-
ticularly when the markets incur very high losses (fat 
tails). It is these two or three crisis years when losses 
are at 20 or 30 percent or even higher, that really 
have a negative effect on long-term financial results. 
This is why it is critically important to minimize such 
extreme loss events.
 The world of portfolio theory is in turmoil. The 
most recent crises have demonstrated that existing 
models have failed to adequately reflect the real 
world. The task now is to refine and expand these 
models – without abandoning their fundamental con-
cepts, which continue to be valid. Diversification – 
avoiding putting all of one’s eggs in one basket – and 
a focus on risk will remain central to portfolio theory; 
what is changing is our understanding of risk and 
ways of measuring it.
 Finance is the same as any other branch of sci-
ence: No one claims that Newton’s theories are use-
less, but additions and refinements have been made 
over the years, to the benefit of all. 

GLoSSARy

NoRMAL dISTRIBuTIoN
One of the most important proba-
bility distributions, which takes 
the form of a symmetrical bell 
curve. The probabilities of posi-
tive and negative deviation from 
the mean are identical.

SkeWNeSS
A measure of the symmetry or 
asymmetry of a distribution.

kuRToSIS
This expresses the peakedness 
of a distribution curve and indi-
cates whether the likelihood  
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Figure 2.3: Skewness is a measure of symmetry or asymmetry of a distribution. The skewed
distributions (red curves) are compared to the normal distributions (blue curves). Source:
Credit Suisse [24].

The kurtosis expresses the peakedness of a distribution curve and indicates whether the likeli-

hood of extreme events is greater than a normal distribution would suggest [6]. It is known as

the fourth empirical moment. The more peaked the curve (leptokurtic), the greater the likeli-

hood of extreme events. The flatter the curve (platykurtic), the less likely extreme events are

to occur (see Figure 2.4). A normal distribution has a kurtosis of 3. The kurtosis is defined as

ku =
1

N − 1

N∑
i=1

(xi − µ)4

σ4
, (2.9)

where µ is the mean, σ the standard deviation, and N the number of data points (xi, . . . , xN ).
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This means that models should attach higher prior-
ity to avoiding losses.
 How can these two issues be addressed system-
atically? First, today’s models are more likely to ac-
count for non-normal distributions, with not only 
mean values and standard deviations being used as 
defining parameters, but also asymmetry and kurto-
sis. This gives investors a more accurate picture of 
reality – which, indeed, is the ultimate goal of any 
model, whether on the stock exchange or in a factory.
 Second, a new measure of risk addresses the risk 
issue. Whereas Markowitz’s theory focused on vola-
tility, today greater emphasis is placed on modeling 
the risk of loss – which can be expressed mathemat-
ically by the Conditional Value at Risk (CVaR). CVaR 
examines more closely the frequency of extreme 
events within the distribution, and makes it possible 
to estimate the magnitude of the average expected 
loss. In other words, CVaR specifies the average 
potential for loss in the case of extreme losses.

Minimizing Extreme Losses
This information forms the basis of a different kind of 
portfolio optimization that specifically minimizes the 
expected average risk of loss. This is important par-
ticularly when the markets incur very high losses (fat 
tails). It is these two or three crisis years when losses 
are at 20 or 30 percent or even higher, that really 
have a negative effect on long-term financial results. 
This is why it is critically important to minimize such 
extreme loss events.
 The world of portfolio theory is in turmoil. The 
most recent crises have demonstrated that existing 
models have failed to adequately reflect the real 
world. The task now is to refine and expand these 
models – without abandoning their fundamental con-
cepts, which continue to be valid. Diversification – 
avoiding putting all of one’s eggs in one basket – and 
a focus on risk will remain central to portfolio theory; 
what is changing is our understanding of risk and 
ways of measuring it.
 Finance is the same as any other branch of sci-
ence: No one claims that Newton’s theories are use-
less, but additions and refinements have been made 
over the years, to the benefit of all. 
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Figure 2.4: Investors prefer low kurtosis (platykurtic) distributions. The distributions with a
kurtosis different from 0 (red curves) are compared to the normal distributions (blue curves).
Source: Credit Suisse [24].
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Distributions with a kurtosis greater than 3 are known as fat tails (see Figure 2.5). Investors

prefer lower kurtoses to higher kurtoses – they do not like the higher probability of losses that

happens in distributions with fat tails. An example of a skewed, leptokurtic distribution can be

found, in the equity market returns, as demonstrated in Figure 2.6.
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Figure 2.5: Fat tails refer to distributions (red curve) with a relatively high risk of extreme
losses and profits; the extremes are more pronounced than in a normal distribution (blue curve).
Source: Credit Suisse [24].
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Figure 2.6: An example of an asymmetric distribution (red curve) that deviates from the
normal distribution (blue curve) are the historical equity market daily returns of the DAX from
October 3 to December 30, 2005. The probability distribution of the red curve is plotted as
kernel smoothing approximation of the histogram, using the ksdensity function in Matlab.
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2.3 Risk

Trading in assets whose future outcomes are uncertain necessarily involves risk for the investors.

Thus, the management of risk is a major concern for the operation of financial markets [9]. For

example:

• Financial regulators try to minimize the occurrence and impact of the collapse of financial

institutions by placing restrictions on the types and sizes of permitted trades, such as

limits on short sales.

• Risk managers in investment companies place restrictions on the activities of individual

traders, seeking to avoid levels of exposure that the company may not be able to meet in

extreme circumstances.

• Individual investors seek to diversify their investments to avoid extreme exposure to sud-

den moves in financial markets.

The mathematical analysis of risk measures has also been a principal concern of actuarial and

insurance professions from the beginning. Also, it plays a fundamental role in the theory of

portfolio selection where the objective is to find a portfolio that maximizes expected return

while minimizing risk [9]. The following sections contain a description of which properties a

good risk measure should have and an overview of volatility, the basis of the mean-variance

portfolio optimization. In addition, VaR and CVaR are introduced as downside risk measures,

which are further used throughout the thesis for the optimization approach in Chapter 3.

2.3.1 Coherent Risk Measures

Artzner et al. [2, 3] introduced a framework in which an ideal risk measure fulfills all of the

framework’s four axioms. These axioms define the minimum standard for any risk measure to

be coherent. Even if a risk measure fails in one of the four axioms, it can lead to incorrect

results and a improper estimation of risk. Jorion [14] defines them as following:

Axiom 1: Subadditivity

Merging assets from portfolios P1 and portfolios P2 cannot increase risk. The concept of diver-

sification must have a reduction in risk ρ.

ρ(P1 + P2) ≤ ρ(P1) + ρ(P2) (2.10)
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Axiom 2: Monotonicity

If portfolio P1 has systemically lower returns than portfolio P2, its risk must be greater.

if P1 ≤ P2, then ρ(P1) ≥ ρ(P2) (2.11)

Axiom 3: Translation invariance

The addition of cash in the amount k to a portfolio should reduce its risk by k.

ρ(P + k) = ρ(P )− k (2.12)

Axiom 4: Homogeneity

Increasing the size of a portfolio by a factor b should simply scale its risk by the same factor.

ρ(bP ) = bρ(P ) (2.13)

2.3.2 Volatility

According to Elliott and Kopp [9], volatility is the simplest risk measure. It is the basis for the

traditional portfolio theory and, therefore, used in Markowitz’ mean-variance [12] and related

portfolio optimization approaches. Volatility is a measure for variation in prices of an asset or

a portfolio. The higher the volatility is, the greater are the price differences in a specific time

period. Volatility σ estimated by a sampled mean is biased with

σ =

√√√√ 1

N − 1

N∑
i=1

(Ri − µ)2, (2.14)

where Ri represents the returns, N the number of returns, and µ the expected return (see

Equation 2.3) [4].

The advantage of volatility as a risk measure is that it is very easy to calculate. However,

even though the risk measure fulfills the axioms of the Artzner’s framework [2], there are some

disadvantages to it. The most important disadvantage is that the variance measure treats

returns and losses symmetrically. Volatility is, therefore, solely ideal for normal distributed

returns. The recent past – especially when the markets crashed in 2001 and in 2007 – has

shown that returns do not necessarily follow the logic of a normal probability distribution [12].

In fact, extreme losses occur more frequently than presumed by a normal distribution, which

makes volatility less favorable to measure risk, because investors attach greater importance to
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losses than to profits of the same magnitude. Nowadays, greater emphasis is placed on estimating

the risk of losses [12]. By using downside risk measures, such as Value-at-Risk and Conditional

Value-at-Risk, the risk of so called fat-tail distributions can be expressed and controlled more

precisely.

2.3.3 Value-at-Risk

According to Jorion [14], Value-at-Risk is the worst loss (which is the maximum negative return)

over a certain period of time which will not be exceeded with a given level of confidence β (see

Figure 2.7). VaR has become the standard benchmark for measuring financial risks [9]. It is

defined by the smallest number α at the confidence level β ∈ (0, 1) such that the probability

that the loss L exceeds α is at maximum (1 - β).

V aRβ = min{α ∈ R : P (L > α) ≤ 1− β} (2.15)

VaR was introduced by JP Morgan in 1994. It was initially considered to represent a new risk

measure which doesn’t lack on the issues of variance as a measure of risk (see Section 2.3.2).

But after a while concern was raised because VaR has some unfavorable properties to be used

as risk measure. For non-normal distributions VaR

• is not a coherent risk measure because it does not fulfill the subadditivity axiom, which

implies that a portfolio’s VaR might be higher than the sum of its assets (see Section 2.3.1),

• is non-linear,

• is non-convex and non-smooth with respect to portfolio positions, and

• has multiple local extrema.

FOR INFORMATION AND/OR ILLUSTRATION PURPOSES ONLY. SOURCE: IBBOTSON ASSOCIATES, UNLESS OTHERWISE NOTED. NOT FOR PUBLIC DISTRIBUTION.
©2010 Ibbotson Associates, Inc. All rights reserved. Ibbotson Associates, Inc. is a registered investment advisor and wholly owned subsidiary of Morningstar, Inc. 
The information contained in this presentation is the proprietary material of Ibbotson Associates. Reproduction, transcription or other use, by any means, in whole or 
in part, without the prior written consent of Ibbotson Associates, is prohibited.

18

Worst 5th Percentile
95% of all returns are better
5% of all returns are worse

∞ Worst 1st Percentile
99% of all returns are better
1% of all returns are worse

VaR identifies the return at a specific point (e.g. 1st or 5th percentile)

Value-at-Risk (VaR)

Figure 2.7: VaR identifies the return at a specific point in a return distribution (e.g., 1st or
5th percentile). Source: Ibbotson [5].
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This means that VaR is difficult to optimize for discrete distributions, when it is calculated

using scenarios. Due to its non-linearity it cannot be used for optimization models based on

linear solvers. In the debate between Aaron Brown and David Einhorn, Einhorn compared VaR

to “an airbag that works all the time, except when you have a car accident.” [8]

2.3.4 Conditional Value-at-Risk

Like VaR, Conditional Value-at-Risk is a downside risk measure, but as shown in Figure 2.8,

CVaR measures the average loss in the entire tail with a certain level of probability (e.g., 90%,

95%, 99%). Acerbi and Tasche [1] defined expected shortfall similarly to CVaR.

FOR INFORMATION AND/OR ILLUSTRATION PURPOSES ONLY. SOURCE: IBBOTSON ASSOCIATES, UNLESS OTHERWISE NOTED. NOT FOR PUBLIC DISTRIBUTION.
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CVaR vs. VaR

∞

Notice that different return distributions can have 
the same VaRs, but different CVaRs

Worst 5th Percentile
95% of all returns are better
5% of all returns are worse

Figure 2.8: Different return distributions can have the same VaR’s, but different CVaR’s
because of different tails. Source: Ibbotson [5].

CVaR is the average return given that the return is smaller than VaR with a certain level of

confidence (see Figure 2.9). Rockafellar and Uryasev [20] defined CVaR for a specified confidence

level β as

CV aRβ =
1

1− β

V aRβ∫
− inf

f(w, r)p(r)dy, (2.16)

where f(w, y) is the return function with distribution p(r) of portfolio returns r over a certain

time period. V aRβ is calculated over the same time period with the confidence level β.
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Sarykalin et al. [22] considered the measure to be more consistent than VaR because CVaR

• is a coherent risk measure in the sense of Artzner et al. [2] (see Section 2.3.1),

• is applicable to non-symmetric loss distributions,

• can be implemented with linear programming (fast and stable) which allows the optimiza-

tion of very large problems (over 1’000’000 instruments and scenarios),

• is convex and smooth with respect to portfolio positions, and

• accounts for risks beyond VaR, which means it is more conservative than VaR.
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Figure 2.9: CVaR is the average return given that the return is smaller than VaR with a
certain level of confidence β.
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2.4 Portfolio Optimization

2.4.1 Diversification as Risk Reduction

Regardless of the optimization method to allocate assets in portfolios, the concept of diversi-

fication has established as very effective to reduce risk. However, the effect diminishes with

increasing number of assets in the portfolio. Typically, the diversification effect is most efficient

in portfolios composed of about 20 assets [10]. This means that diversification reduces risk only

to a certain degree.

2.4.2 Efficient Portfolios and the Optimal Portfolio

Drake and Fabozzi [7] stated that portfolios are efficient when they provide the maximum

possible expected return for a certain risk. To build efficient portfolios one needs to define

some assumptions about investors and their behavior. The first assumption is that investors

are risk-averse, which means that they will choose the portfolio with the lowest risk, when faced

with several portfolios with the same expected return, but with different risk. On the other

hand, a risk-averse investor will choose the portfolio with the highest return, when they have to

choose from a set of portfolios with the same risk, but different expected returns. That means

that efficient portfolios are located on the efficient frontier as shown in Figure 2.10. From a set

of efficient portfolios, the optimal portfolio is the one that is most preferred by an investor.

Risk
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Risk*

R
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u
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* Efficient Frontier

Efficient Portfolios

Figure 2.10: Efficient portfolios (green dots) with corresponding Risk* and Return* are on
the efficient frontier.
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2.4.3 Mean-Variance Optimization

Mean-variance is the traditional optimization approach introduced by Markowitz in his seminal

paper titled “Portfolio Selection”, published in 1952 [16]. Even before Markowitz presented his

approach, portfolio theory was an important topic. However, the main focus of Bachelier5 and

his successors was to improve performance. Markowitz focused on risk. He established volatility

(see Section 2.3.2) as the major risk measure in portfolio theory and showed how the risk can

be reduced by diversification. He demonstrated how to generate financial portfolios, which have

a maximum expected return for a given level of risk, measured in standard deviation σ. The

portfolio with the lowest risk is called the minimum variance portfolio (see Figure 2.11).
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*

Efficient Frontier

Minimum Variance Portfolio

Figure 2.11: The Minimum Variance Portfolio (green dot) on the efficient frontier has the
Minimum Risk with corresponding Return*.

The reason for the preference of the mean-variance model is the fact that expected portfolio

returns are difficult to estimate and that estimation errors can lead to sub-optimal portfolio

selection [13]. When taking into account that all assets in the portfolio have the same expected

return, they only differ with respect to their risk. With this expected return assumption, and

the assumption that variance is an appropriate measure of risk, the mean-variance model is

a very powerful method because the model depends only on the portfolio covariance matrix,

which can be estimated precisely. In addition, the model has the advantage that it is easy

to understand and straightforward to use. However, because volatility, as the basis of the

mean-variance optimization, has known limitations (see Section 2.3.2), the development of new

optimization approaches continues.

5Louis Bachelier (1870–1946) is recognized as the founder of financial mathematics [24]. He used Brownian
motion to model price trends of securities as a symmetrical fluctuation away from the expected returns.





Chapter 3

Portfolio Optimization with CVaR

Constraints

Because mean-variance and other optimization frameworks based on symmetric distributions

penalize positive as well as negative returns, alternative risk measures, for example VaR (see

Section 2.3.3), have become more important in recent years. However, VaR is neither an ideal

basis for portfolio optimization due to the issues described in Chapter 2. CVaR, in contrast to

VaR, captures tail risk more precisely and is accepted as a coherent risk measure, applicable for

non-normal distributions and has the ability to be implemented with linear programming (see

Section 2.3.4). In this chapter, the optimization approach of Rockafellar and Uryasev [20] to

optimize portfolios with CVaR is elaborated and implemented.

3.1 Optimization Approach

The approach of Rockafellar and Uryasev [20] is considered to optimize portfolios of assets

either by a minimized CVaR, or by putting limits on the CVaR under which the portfolio can

be optimized.

3.1.1 Derivation

We use the notation that f(w, r) is the loss function associated with the decision vector w ∈
W ⊂ Rn (e.g. portfolio weights) and the random vector r ∈ Rm (e.g. returns of portfolio

assets). When r has the distribution p(r), then the probability of the loss f(w, r) not exceeding

a certain threshold α is given by

19
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Ψ(w,α) =

∫
f(w,r)≤α

p(r)dr, (3.1)

where Ψ, as a function of α for fixed w, is the cumulative distribution function for the loss related

with w. Ψ(w,α) is non-decreasing with respect to α and, as with p(r), is also continuous. The

VaR and CVaR values can be denoted as αβ(w) and φβ(w) respectively, in the description of

Rockafellar and Uryasev [20] they are given by

αβ(w) = min{α ∈ R : Ψ(w,α) ≥ β} (3.2)

and

φβ(w) = (1− β)−1
∫

f(w,r)≥αβ(w)

f(w, r)p(r)dr. (3.3)

This means that CVaR is the integral of the losses f(w, r) which are greater or equal than the

VaR (αβ(w)) divided by (1− β) where β is the confidence level (e.g., 95%; see Figure 2.9).

3.1.2 Reformulation

The CVaR function in Equation 3.3 is difficult to handle as it is a function including the VaR-

function 3.2. Using φβ(w) for the optimization of CVaR implies that VaR would have to be

calculated first. The major contribution by Rockafellar and Uryasev [20] was the derivation of

a CVaR-function that is independent of the VaR-function, making the optimization process less

complicated. This function is defined by

F (w,α) = α+ (1− β)−1
∫

r∈Rm

[f(w, r)− α]+p(r)dr,

where

[t]+ =

t when t > 0,

0 when t ≤ 0.

(3.4)

Rockafellar and Uryasev [20] show that minimizing the function F (w,α) gives the same result

as solving φβ(w).

φβ(w) = min
α∈R

F (w,α) (3.5)
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The crucial feature of F (w,α), in Equation 3.4, is that not just portfolio weights w, but also the

quantile level α must be optimized. This means that by implementing the CVaR optimization

approach VaR is calculated as side-effect. Rockafellar and Uryasev [20] prove that usually the

minimization of CVaR also leads to a nearly optimal VaR because VaR never exceeds CVaR.

Therefore, portfolios with low CVaR must have low VaR as well. Additionally, it is a convex

function, which is a key property for optimization6.

3.1.3 Discretization

The integral of Equation 3.4 is approximated by sampling the probability distribution of r

according to its density p(r). If the sampling generates a collection of values (r1, . . . , rJ), the

approximation has the form

F (w,α) = α+ (1− β)−1
J∑
j=1

πj [f(w, r)− α]+, (3.6)

where J is the number of scenarios and πj are probabilities of the scenarios rj . To illustrate the

approach of Rockafellar and Uryasev [20] as a portfolio optimization method, we consider that

the decision vector w represents a portfolio of financial assets in the sense that w = (w1, . . . , wN )

where N is the number of assets in the portfolio and wi is the weight of the asset at the position

i in the portfolio so that

wi ≥ 0 for i = 1, . . . , N with
N∑
i=1

wi = 1. (3.7)

The return on a portfolio is the sum of the returns on the individual assets in the portfolio,

scaled by the asset weights wi. Because the derivation of CVaR was elaborated with the loss

we take the negative of the returns, given by

f(w, r) = −[w1r1 + . . .+ wNyN ] = −wT r. (3.8)

By using simulation methods, which will be described in Chapter 4 to generate returns, the

CVaR minimization problem is an optimization of the arguments w (asset weights in the port-

folio) and α (VaR).

6Convexity eliminates the possibility of a local minimum being different from a global minimum.
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argmin
(w,α)

α+
1

J(1− β)

J∑
j=1

[−wT rj − α]+

s.t. w ∈W,α ∈ R

(3.9)

3.1.4 Linearization

The minimization of the objective function in Equation 3.9 is not a linear program because

the expression [−wT rj − α]+, which ensures that only losses are taken into account which are

greater than or equal to VaR, has to be implemented with a non-linear operator (e.g., max).

The objective function could be implemented in Matlab as:

i = 1: nAssets;

objfun = @(w) w(nAssets +1)+(1/ nSims )*(1/(1 - beta ))*sum(max(-w(i)*r(:,i)’-w(nAssets +1) ,0));

For solving the optimization problem by a linear solver, it has to be re-written with the intro-

duction of auxiliary variables uj , j = 1, . . . , J to the form

argmin
(w,α,u1,...,uJ )

α+
1

J(1− β)

J∑
j=1

uj

s.t. w ∈W,α ∈ R

uj ≥ 0, j = 1, . . . , J

wT rj + α+ uj ≥ 0, j = 1, . . . , J

(3.10)

The solution is that the non-linear max-function, which has been used in the non-linear problem

in Equation 3.9, is replaced by the variables uj and additional linear constraints on these

variables. Assume that −wT rj −α is negative7, which means [−wT rj −α]+ = 0, then wT rj +α

is positive and uj can be zero because the constraint is already fulfilled. For the other scenario

where −wT rj −α is positive8, which means [−wT rj −α]+ = −wT rj −α, then uj cannot be less

than −wT rj − α in order for the constraint wT rj + α+ uj ≥ 0 in Equation 3.10 to be fulfilled.

By applying this function as the objective function in a linear solver, the portfolio allocation

with the lowest risk will be found. On the efficient frontier in Figure 3.1 this is the Optimal

Portfolio which has a return of Return∗ and the lowest possible risk (Minimum Risk).

7the loss is smaller than VaR
8the loss is greater than or equal to VaR
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Figure 3.1: The Optimal Portfolio in a minimal CVaR sense on the efficient frontier with
Minimum Risk and Return*.

3.2 Linear Programming

Due to the linearization in the Rockafellar and Uryasev [20] approach described in Section 3.1.4,

the optimization problem can now be solved using linear programming.

3.2.1 Description

Linear programming (LP) is a method for the optimization of linear objective functions, subject

to linear equality and linear inequality constraints. The intersections of the linear constraints

define a feasible region in the form of a convex polyhedron (see Section 3.2). A linear program-

ming algorithm finds a point in the polyhedron where the objective function has the smallest

(or largest) value, if such a point exists [27]. For a minimization problem it has the form

min fTw

s.t. Aw ≤ b

and x ≥ 0,

(3.11)

where w represents the vector of variables which have to be optimized. f and b are vectors of

known coefficients, A is a known matrix of coefficients. The inequalities Aw ≤ b and x ≥ 0

are the constraints which specify a convex polyhedron (feasible region) over which the objective
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function is to be optimized. As an example for a simple linear program the objective function

(the coefficient vector of the objective function respectively)

fTw = −3w1 − 2w2 =
( w1 w2

−3 −2
)

(3.12)

is subjected to the linear inequality constraints in the form A ∗ w ≤ b

A =


w1 w2

3 4

2 1

 b =

 7

3

 (3.13)

and the linear equality constraints in the form Aeq ∗ w = beq

Aeq =
( w1 w2

−3 2

)
beq =

(
2

) (3.14)

which results in a polyhedron, defined by the intersections of the linear constraints, illustrated

in Figure 3.2.

356 OPTIMIZATION

%nm733 to solve a Linear Programming problem.
% Min f*x=-3*x(1)-2*x(2) s.t. Ax <= b, Aeq = beq and l <= x <= u
x0 = [0 0]; %initial point
f = [-3 -2]; %the coefficient vector of the objective function
A = [3 4; 2 1]; b = [7; 3]; %the inequality constraint Ax <= b
Aeq = [-3 2]; beq = 2; %the equality constraint Aeq*x = beq
l = [0 0]; u = [10 10]; %lower/upper bound l <= x <= u
[xo_lp,fo_lp] = linprog(f,A,b,Aeq,beq,l,u)
cons_satisfied = [A; Aeq]*xo_lp-[b; beq] %how constraints are satisfied
f733o=inline(’-3*x(1)-2*x(2)’, ’x’);
[xo_con,fo_con] = fmincon(f733o,x0,A,b,Aeq,beq,l,u)

It produces the solution (column) vector xo and the minimized value of the
objective function f (xo) as its first and second output arguments xo and fo,
where the objective function and the constraints excluding the constant term are
linear in terms of the independent (decision) variables. It works for such linear
optimization problems as (7.3.10) more efficiently than the general constrained
optimization routine “fmincon()”.

The usage of the routine “linprog()” is exemplified by the MATLAB pro-
gram “nm733.m”, which uses the routine for solving an LP problem described as

Min f (x) = fT x = [−3 − 2][x1 x2]T = −3x1 − 2x2 (7.3.11a)

s.t.

Ax =

−3 2

3 4
2 1


[

x1

x2

] =
≤
≤


 2

7
3


 = b and

l =
[

0
0

]
≤ x =

[
x1

x2

]
≤

[
10
10

]
= u (7.3.11b)
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Figure 7.15 The objective function, constraints, and solutions of an LP problem.

Figure 3.2: A convex polyhedron, formed by intersections of linear constraints, defines the
feasible region for solutions of the objective function. Source: Applied Numerical Methods
Using Matlab [27].
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3.2.2 Advantages

When a problem can be implemented with linear programming:

• optimal solutions are always found at ’corner points’ of the constraint polyhedron (where

two or more constraints intersect). This means that a LP solver needs to consider many

fewer points than a non-linear programming solver which implies short solving times.

• it can be used to solve very large problems with millions of variables

• it is always possible to determine that an linear programming problem has:

– no feasible solution,

– an unbounded objective, or a globally optimal solution

3.2.3 Solvers

Available LP solvers differ in many ways. They come with different licenses and of course

different features, for example in terms of how problems can be specified. Popular and well-

known commercial LP solvers [17] (license cost of approx. 7’000 - 10’000 USD) are:

• Cplex: is now actively developed by IBM. The software also features several interfaces

that make it possible to connect the solver to different program languages and programs.

However, also a stand-alone executable is provided.

• Xpress: is available on most common computer platforms and also provides several in-

terfaces including a callable library APIs for several programming languages as well as a

standalone command-line interface.

3.2.4 Advantage for the Optimization Approach

Because the CVaR optimization approach of Rockafellar and Uryasev can be solved with a linear

solver, it is possible to optimize:

• very large portfolios,

• and a large number of scenarios,

• with normal as well as non-normal distributions of the underlying asset returns, and

• with relatively small computational resources [26].
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This is a major advantage over the traditional mean-variance optimization of Markowitz which

is only optimal for normal distributions and can only be solved with quadratic programming,

which uses a lot more computational resources than LP.

3.3 Maximizing Return for a Certain Risk

Instead of optimizing the portfolio to have the lowest possible risk (described in Section 3.1.4),

a more useful solution is to find the portfolio allocation with the highest return for a certain

risk level [15]. This means that we want to maximize the expected return (which is minimizing

the expected loss) for a certain CVaR-budget.

3.3.1 Problem Definition

The linearized optimization problem of Equation 3.10 has to be re-formulated to a new opti-

mization problem of the form

argmin
(w,α,u1,...,uJ )

− wT m̄

s.t. w ∈W,α ∈ R

α+
1

J(1− β)

J∑
j=1

uj ≤ δ

uj ≥ 0, j = 1, . . . , J

wT rj + α+ uj ≥ 0, j = 1, . . . , J

(3.15)

where δ is the CVaR limit and m̄ is the expected outcome of r (in the context of the current

thesis, m̄ is the expected return E(R)). This means that the CVaR function of Rockafellar and

Uryasev [20] is a constraint of the objective function. As shown in Figure 3.3, the optimization of

Equation 3.15 finds the portfolio allocation with the maximum return (Return∗) on the efficient

frontier within a certain risk limit, expressed with CVaR. This is the optimal portfolio on the

efficient frontier for a given risk in a CVaR sense. Increasing the risk limit will result in a higher

expected return.
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Figure 3.3: The Optimal Portfolio on the efficient frontier with maximum return Return* for
a certain Risk Limit, expressed with CVaR.

3.3.2 Implementation

The optimization of Equation 3.15 is implemented with the Matlab function fmincon9. The

initialization of the parameters for an implementation with an LP solver (e.g. linprog) is sim-

ilar to fmincon. It returns the vector w, where w1, . . . , wN are the asset weights for the optimal

portfolio and wN+1 is the corresponding VaR. The return value fval is the expected return un-

der the corresponding constraints. The parameters for fmincon will be elaborated step by step10

[w, fval] = fmincon(objfun , w0 , A, b, Aeq , beq , LB, UB , [], options );

3.3.2.1 Objective Function

As can be seen in the fmincon function call above, an objective function has to be defined and

passed as first parameter. The aim is to maximize the return, which is the same as to minimize

the loss −wTm. In this case the objective function has the form:

objfun = @(w) -mean(r(:,1: nAssets ))*w(1: nAssets)’;

9fmincon is a general constrained optimization routine. It finds the minimum of a constrained multivariable
function.

10the options parameter is not part of the concept and is, therefore, not explained in this section. The full
source code of the implementation can be found in Appendix A.
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3.3.2.2 Inequality Constraints

The linear inequality constraints have to be in the form A ∗ w ≤ b. The vector w contains the

variables for the asset weights (w1, . . . , wN ), VaR (α) and the auxiliary variables (u1, . . . , uJ)

which were introduced in Equation 3.10. The first row in A and b represents α+ 1
J(1−β)

J∑
j=1

uj ≤ δ.

The remaining rows substitute wT rj + α + uj ≥ 0, j = 1, . . . , J . The vector r11, . . . , rJN

represents the returns of the corresponding assets in the portfolio (1, . . . , N) associated with

the simulations (1, . . . , J). Because the objective is to minimize losses, the returns have to be

multiplied with −1. This means that A is a N + 1 + J dimensional matrix, where N is the

number of assets in the portfolio and J is the number of simulations. The additional column is

used to represent VaR (α). So the matrices are defined as follows:

A =



w1 w2 · · · wN α u1 u2 · · · uJ

0 0 · · · 0 1 1
J∗(1−β)

1
J∗(1−β) · · · 1

J∗(1−β)

−r11 −r12 · · · −r1N −1 −1 0 · · · 0

−r21 −r22 · · · −r2N −1 0 −1 · · · 0
...

...
. . .

...
...

...
...

. . .
...

−rJ1 −rJ2 · · · −rJN −1 0 0 · · · −1


b =



−δ

0

0

0

0


(3.16)

3.3.2.3 Lower and Upper Bounds

The lower bound (LB) and upper bound (UB) vectors are used to define:

• a maximum asset weight: UB1, . . . , UBN for w1, . . . , wN

• a minimum asset weight: LB1, . . . , LBN for w1, . . . , wN

• the constraint uj ≥ 0, j = 1, . . . , J : u1 . . . , uJ = 0 in LB

Thus, they have the form:

UB =
( w1 w2 . . . wN α u1 u2 . . . uJ

UB1 UB2 . . . UBN inf inf inf . . . inf
)

(3.17)

LB =
( w1 w2 . . . wN α u1 u2 . . . uJ

LB1 LB2 . . . LBN 0 0 0 . . . 0
)

(3.18)
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An upper bound of 1 for an asset position means that each asset can have a maximum of 100%

of the portfolio weight. Defining an upper bound smaller than 1 is used if there are policies

not allocating more than a certain level for a single asset (e.g., 50%) to specify a maximum

concentration. Similarly, a lower bound is used if there are policies allocating assets with a

certain minimum of the portfolio weight (e.g., 5%). The lower bound as well as the upper bound

vector can contain different values for the several asset positions so that different minimum or

maximum weight levels can be specified (e.g., 5%, 10%, 30%, . . . ).

3.3.2.4 Equality Constraints

Similar to the linear inequality constraints, the linear equality constraints have to be in the

form Aeq ∗ w = beq. In this context the equality matrices are used to define

N∑
i=1

wi = 1 for i, . . . , N (3.19)

which means that the sum of the assets (w1, . . . , wN ) is 100%, and therefore, the matrices for

the inequality constraints have the form

Aeq =
(w1 w2 . . . wN α u1 u2 . . . uJ

1 1 . . . 1 0 0 0 . . . 0

)
beq =

(
1

) (3.20)

3.3.2.5 Initial Values

The last parameter for fmincon is the vector w0 which is used by the optimizer for the initial

values of the several variables. The initial values for the variables u1, . . . , uJ have the value 0,

the values for w1, . . . , wN are initialized with 1−N and the initial value for α is the quantile of

the equally weighted portfolio returns, named V aR0. The vector w0 has the form

w0 =
(w1 w2 . . . wN α u1 u2 . . . uJ

1
N

1
N . . . 1

N V aR0 0 0 . . . 0
)

(3.21)





Chapter 4

Scenario Generation

The optimization approach of Rockafellar and Uryasev [20], described in Chapter 3, requires

generated scenarios which simulate future prices of the financial assets underlying the portfolio.

In this chapter two different methods of scenario generation are demonstrated. The first is a

Monte Carlo simulation based on geometric Brownian motion, and the second is a bootstrapping

of historical data.

4.1 Monte Carlo Simulation

For the Monte Carlo simulation we use geometric Brownian motion, a continuous-time stochastic

process in which the logarithm of the randomly varying quantity follows a Brownian motion11

with drift [21]. It is a stochastic processes satisfied by the solution to a stochastic differential

equation (SDE), as demonstrated in Equation 4.1.

4.1.1 Asset Paths

The simulation of a potential future asset price St is based on the Wiener process of the form

St = S0 exp[(µ− σ2

2
)t+ (σ

√
t)ε] (4.1)

where

• S0: Asset price today

• St: Asset price in the future

11also called a Wiener process

31
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• t: Time increment

• µ: Expected return (the percentage drift)

• σ: Expected volatility

• ε: Random number (ε ∼ N(0, 1))
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Figure 4.1: Example of a random path of four asset prices for 10 years, generated with
geometric Brownian motion with different expected values µ and different standard deviations
σ for each asset.

The repeated use of Equation 4.1 generates multiple potential future asset paths, as shown in

Figure 4.1. For a meaningful Monte Carlo simulation many thousands of future asset paths

need to be generated. By increasing the number of generated paths, the time for the simulation

as well as the optimization increases. However, the more simulations are generated, the more

likely the effects of tail events and outliers will be accounted for the optimization.
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Figure 4.2: Example of three correlated asset price simulations for 60 trading days, generated
with geometric Brownian motion. The expected return µ and standard deviation σ are from
the underlying price indices (DAX, NIK, FTSE, S&P500) measured in the time period from
October 3 to December 30, 2005.

4.1.2 Correlated Asset Paths

In order to have meaningful scenarios it is not enough to generate independent random paths for

each asset. The generated paths need to correlate the assets they model, as shown in Figure 4.2.

Nyholm [18] suggests to use the Cholesky decomposition of the covariance matrix to generate

correlated asset paths. This decomposition allows for the calculation of the upper triangular

matrix U from a positive definite matrix12, in this case the covariance matrix C13. The Cholesky

decomposition has the form (see e.g., Glasserman [11]):

C = UTU (4.2)

12The matrix C[n,n] is positive definite if wTCw > 0, ∀w where w[n,1] 6= 0[n,1].
13A covariance matrix is always positive definite
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The upper triangular matrix U is useful for generating correlated random numbers in the fol-

lowing way:

Rr,c = Wr,c ∗ Uc,c (4.3)

First, uncorrelated random numbers W have to be generated. Then, these random numbers

are ‘run through’ the Cholesky decomposition to generate the matrix R of correlated random

numbers of the desired dimension, here (r, c). The corresponding Matlab function to generate

sample correlated paths for assets assuming geometric Brownian motion (see Equation 4.1) is:

function [S] = gbmcorr(S0, mu, sig , corr , dt, nSteps , nSims)

nAssets = length(SO);

drift = mu - sig .^2/2;

U = chol(corr);

S = nan(nSteps+1,nAssets ,nSims );

for idx = 1:nSims

W = randn(nSteps , nAssets );

R = W*U;

S(:,:,idx) = [ones(1,nAssets ); ...

cumprod(exp(repmat(drift*dt,nSteps ,1) ...

+R*diag(sig)*sqrt(dt )))]* diag(S0);

end

end

where S0 is a vector with the initial-prices of the several assets, mu is the expected return, corr

is the correlation coefficient matrix, dt is the increase in time, nSteps is the number of time

steps T , and nSims is the number of simulations J .

The result is a T-by-N-by-J dimensional matrix with asset prices where each row represents a

time step (t1, . . . , tT ), each column represents a different asset (a1, . . . , aN ), and each slice in the

3rd dimension represents a separate simulation run (S1, . . . , SJ). Equation 4.4 is an example of

a correlated asset path output with three simulation runs and a period of four trading days:

S1 =



a1 . . . aN

t1 p111 . . . p1N1

t2 p211 . . . p2N1

t3 p311 . . . p3N1

t4 p411 . . . p4N1

 S2 =



a1 . . . aN

t1 p112 . . . p1N2

t2 p212 . . . p2N2

t3 p312 . . . p3N2

t4 p412 . . . p4N2

 S3 =



a1 . . . aN

t1 p113 . . . p1N3

t2 p213 . . . p2N3

t3 p313 . . . p3N3

t4 p413 . . . p4N3


(4.4)
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4.2 Bootstrapping (Historical Simulation)

In addition to the Monte Carlo simulation, a bootstrapping method is used to generate scenarios.

Like the Monte Carlo simulation, the bootstrapping takes care of the correlation between the

several assets. The historical daily returns14 of the assets a1, . . . , aN in the matrix R.

R =



a1 a2 . . . aN

t1 r11 r12 . . . r1N

t2 r21 r22 . . . r2N

t3 r31 r32 . . . r3N

t4 r41 r42 . . . r4N

 (4.5)

will be randomly re-sampled to the new matrix R′ in which the asset returns of a single day

from R will be copied as whole row into R′ so that the correlation between the different asset

returns remains the same.

R′ =



a1 a2 . . . aN

t3 r31 r32 . . . r3N

t2 r21 r22 . . . r2N

t4 r41 r42 . . . r4N

t1 r11 r12 . . . r1N

 (4.6)

To calculate the prices in a convenient way, we add a new row of 1’s at the top of R′ and add

1 to all returns in the remaining rows. This gives the matrix R′′.

R′′ =



a1 a2 . . . aN

t0 1 1 . . . 1

t3 1 + r31 1 + r32 . . . 1 + r3N

t2 1 + r21 1 + r22 . . . 1 + r2N

t4 1 + r41 1 + r42 . . . 1 + r4N

t1 1 + r11 1 + r12 . . . 1 + r1N


(4.7)

The path of the asset prices are then calculated by the cumulative products of the columns of

R′′. The result is a price matrix S, which has the form:

14where t1, . . . , t4 represent 4 trading days.
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S =



a1 a2 . . . aN

t0 p01 p02 . . . p0N

t1 p11 p12 . . . p1N

t2 p21 p22 . . . p2N

t3 p31 p32 . . . p3N

t4 p41 p42 . . . p4N


(4.8)

From the price matrix S, the returns over the time period T , are calculated and stored to the

matrix R′′′ in the form:

R′′′ =



a1 a2 . . . aN

s1 r11 r12 . . . r1N

s2 r21 r22 . . . r2N

s3 r31 r32 . . . r3N
...

...
...

. . .
...

sJ rJ1 rJ2 . . . rJN


(4.9)

where r11, . . . , rJN represent the returns of the time period T , in this case the return for 4

trading days, for the different simulation runs s1, . . . , sJ . The corresponding implementation in

Matlab of the bootstrapping approach looks as follows:

function [periodReturns] = bootstrap(R, nDays , nSims)

nAssets = size(R,2);

periodReturns = nan(nSims , nAssets );

for iSim = 1: nSims

dReturns = [ones(1, nAssets ); nan(nDays , nAssets )];

for day = 1:nDays

pos = randi(length(R));

dReturns(day+1, :) = R(pos , :)+1;

end

prices = cumprod(dReturns );

periodReturns(iSim , :) = (prices(end ,:) - prices (1 ,:))./ prices (1 ,:);

end

end

where R contains the historical daily returns for each asset, nDays is the number of days to

bootstrap returns, and nSims is the number of simulations. The method returns the matrix

R′′′, the returns over the time period T (periodReturns). This matrix can be directly used as

input of the optimization approach, which was elaborated in Chapter 3.



Chapter 5

Analysis of the Implemented

Optimization

The elaborated and implemented approach of Rockafellar and Uryasev [20] in Chapter 3 is

now used to optimize a portfolio composed of a set of assets from different asset classes. This

chapter shows the composition of the portfolio, the calibration of the simulation methods, and

the observations of the optimization. To analyze the implemented approach, the results are

compared with the output of a brute-force optimization. The analysis procedure is illustrated

in Figure 5.1.

Historical Data

Monte Carlo 
Simulation

Bootstrapping

Optimization

Analysis

Figure 5.1: Firstly, the historical data of the underlying assets in the portfolio will be analyzed
and used for the simulations. Secondly, the generated scenarios will be optimized and analyzed.

37
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5.1 Portfolio Composition

To provide a wide range of diversification the portfolio contains US and global indices from

different asset classes, as shown in Table 5.1. The historical market data is sourced from Datas-

tream15 in the form of daily prices.

Table 5.1: The portfolio is composed of several assets from different asset classes. The corre-
sponding daily prices are retrieved from Thomson Reuters Datastream.

Asset Asset Class Description Datastream Id

CASH Cash Barclays US Short Treasury LHSHORT(IN)+100

CORB Fixed Income Barclays US Credit 5-10Y (Corp. Bonds) LHMFI10(IN)+100

GOVB Fixed Income Barclays US Gov. Bonds LHGOVBD(IN)+100

GOLD Commodities Handy & Harman Gold USD (Troy Oz) GOLDHAR

COMM Commodities CRB BLS Spot Index - Price Index CRBSPOT

MSCI Equity MSCI Global Equity Index MSWRLDL(MSPI)

SP500 Equity S&P 500 US Equity Index S&PCOMP(PI)

5.2 Scenario Generation

To test the implemented optimization approach with two different scenario generating meth-

ods, future asset prices are simulated both by Monte Carlo simulation from a model and by

bootstrapping from historical returns.

5.2.1 Market Data Analysis

Since the generated future asset prices should rely on the history of the assets in the portfolio,

the underlying historical market data (see Section 5.1) need to be analyzed and calibrated. This

means that the time period has to be defined. As a rule of thumb for reliable and reasonable

statistical estimations, the number of trading days to be analyzed has to be between 5 to 20

times the number of the assets in the portfolio. Because the portfolio is composed of seven assets,

the number of trading days is defined as 126, which is the half of the number of trading days per

year (252 / 2 = 126). The Datastream market data (provided by Credit Suisse) is available until

the end of the year 2013. Hence, we analyze the historical prices of the assets in the portfolio

between July 1 and December 31, 2013, visualized in Figure 5.2, to get the required input

for the simulations. As demonstrated in Section 4.1, the Monte Carlo simulation is based on

multivariate geometric Brownian motion, the expected return µ, the standard deviation σ, and

15Thomson Reuters Datastream is a provider of financial market data.
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the correlation ρ are required to generate correlated asset paths (see Table 5.2 and Table 5.3).

In addition, VaR and CVaR are also measured.
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Figure 5.2: Prices of the underlying assets in the portfolio measured between July 1 and
December 31, 2013. The prices are normalized to 100% at midpoint of the time period.

Table 5.2: Measured historical daily returns for the underlying assets in the portfolio in the
time period between July 1 and December 31, 2013 for the annualized expected return µ, the
annualized standard deviation σ, VaR, and CVaR at the confidence level β = 95% in the
specified time period.

Asset µ[%] σ[%] VaR [%] CVaR [%]

CASH 0.11 0.06 -0.00 -0.01

CORB 4.69 4.63 -0.43 -0.59

GOVB -0.03 2.89 -0.26 -0.40

GOLD -3.67 19.45 -2.27 -2.63

COMM -5.84 5.04 -0.53 -0.87

MSCI 22.93 8.18 -0.76 -1.03

SP500 24.34 9.65 -0.86 -1.27
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Table 5.3: Measured historical daily returns for the correlation between the underlying assets
in the portfolio in the time period between July 1 and December 31, 2013. The correlation is
needed to generate correlated asset paths with geometric Brownian motion (see Section 4.1.2).

CASH CORB GOVB GOLD COMM MSCI SP500

CASH 1.0000 0.1961 0.1759 0.2558 -0.1619 0.0736 0.0689

CORB 0.1961 1.0000 0.9755 0.2631 -0.1713 0.0605 0.0794

GOVB 0.1759 0.9755 1.0000 0.2164 -0.1708 -0.0383 0.0119

GOLD 0.2558 0.2631 0.2164 1.0000 0.0824 0.0568 0.0206

COMM -0.1619 -0.1713 -0.1708 0.0824 1.0000 0.0202 0.0084

MSCI 0.0736 0.0605 -0.0383 0.0568 0.0202 1.0000 0.9161

SP500 0.0689 0.0794 0.0119 0.0206 0.0084 0.9161 1.0000

5.2.2 Simulated Trading Days and Number of Simulations

The number of simulations are defined as 1’000 and the scenarios are generated for 10 trading

days. The arithmetic returns are calculated as the difference of the last price to the initial price

divided by the initial price, as described in Equation 2.1, with the function simpaths2ret (see

Appendix A).

5.2.3 Monte Carlo Simulation

The results of the 1’000 simulated future 10-day returns from the Monte Carlo simulation can

be observed in Table 5.4. The measurements show that there are marginal differences to the

historical return distribution. This is related to the relatively small number of simulation runs.

By increasing the number of simulation runs, the difference between the simulated return distri-

bution and the historical return distribution, including the difference between the correlations,

will be diminished.

Table 5.4: Measures of the 1’000 simulated 10-day returns for the underlying assets in the
portfolio for the annualized expected return µ, the annualized standard deviation σ, VaR and
CVaR at the confidence level β = 95% for a period of 10 trading days.

Asset µ[%] σ[%] VaR [%] CVaR [%]

CASH 0.11 0.06 -0.02 -0.02

CORB 4.89 4.54 -1.30 -1.65

GOVB 0.15 2.84 -0.93 -1.14

GOLD -7.90 18.88 -6.25 -7.66

COMM -5.63 5.03 -1.84 -2.20

MSCI 22.54 7.89 -1.69 -2.38

SP500 22.54 9.48 -2.23 -2.91
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5.2.4 Bootstrapping

The second method to simulate future 10-day returns, is done by the bootstrapping from his-

torical returns, as described in Section 4.2. Like for the Monte Carlo simulation, the historical

returns of Section 5.2.1 serve as basis. The difference is that the expected return µ, the standard

deviation σ and the correlation matrix ρ do not have to be measured from the historical returns.

As shown in Table 5.5, the results of 1’000 bootstrapping runs are similar to the Monte Carlo

simulation.

Table 5.5: Measures of the 1’000 simulated 10-day returns for the underlying assets in the
portfolio for the annualized expected return µ, the annualized standard deviation σ, VaR and
CVaR at the confidence level β = 95% for a period of 10 trading days.

Asset µ[%] σ[%] VaR [%] CVaR [%]

CASH 0.12 0.06 -0.02 -0.02

CORB 4.25 4.76 -1.39 -1.79

GOVB -0.23 2.97 -0.98 -1.24

GOLD -5.88 18.64 -5.99 -7.16

COMM -4.66 4.97 -1.91 -2.43

MSCI 21.88 8.07 -1.86 -2.51

SP500 24.45 9.44 -2.05 -2.70

5.3 Optimization with CVaR Constraints

The simulated 10-day returns, generated in Section 5.2, are further used to optimize the portfo-

lio, which is composed of the assets described in Section 5.1. Running the optimization algorithm

with several CVaR limits, according to the 10-day return distribution, results in different asset

allocations. The measures in Table 5.6 and Table 5.7 with its corresponding illustrations in

Figure 5.3 and Figure 5.4 show that by decreasing the risk level, the weight of the risky assets

in the portfolio is reduced by the optimization algorithm. This preference of less risky assets

imply a lower expected return of the portfolio.

By comparing the results of the optimization of the Monte Carlo and the bootstrapping gen-

erated scenarios, one can see that the risk and return characteristic of the optimized portfolio

has only marginal differences. This fact emphasizes the stability of the optimization approach

of Rockafellar and Uryasev [20] and its advantage to handle any kind of return distribution.

However, due to the different generated return scenarios, the optimization algorithm allocates

the assets in the portfolio differently.
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Table 5.6: Based on Monte Carlo scenarios, five optimization runs with different CVaR limits,
according to the 10-day return distribution for a confidence level of 95%, result in different asset
allocations, VaR’s (for 10-day return distribution and a confidence level of 95%), annualized
standard deviations, and annualized expected returns.

CVaR Limit [%] -2.50 -2.00 -1.50 -1.00 -0.50

Exp. Return [%] 22.52 18.64 13.92 9.01 4.15

Std. Dev. [%] 7.89 6.32 4.69 3.02 1.38

VaR [%] -1.75 -1.34 -1.00 -0.66 -0.32

CASH [%] 0.01 0.07 17.36 47.34 76.78

CORB [%] 0.06 21.93 26.70 16.43 6.57

GOVB [%] 0.01 0.03 0.03 0.03 0.03

GOLD [%] 0.01 0.01 0.01 0.01 0.01

COMM [%] 0.01 0.01 0.01 0.01 0.01

MSCI [%] 99.81 77.91 55.85 36.14 16.56

SP500 [%] 0.09 0.04 0.04 0.04 0.04
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Figure 5.3: Based on Monte Carlo scenarios, five optimization runs with different CVaR limits,
according to the 10-day return distribution for a confidence level of 95%, result in different 10-
day return distributions. The lower the risk limit is, the more narrow is the return distribution.
Additionally, the expected returns decrease with more restrictive risk limits.
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Table 5.7: Based on bootstrapped scenarios, five optimization runs with different CVaR limits,
according to the 10-day return distribution for a confidence level of 95%, result in different asset
allocations, VaR’s (for 10-day return distribution and a confidence level of 95%), annualized
standard deviations, and annualized expected returns.

CVaR Limit [%] -2.50 -2.00 -1.50 -1.00 -0.50

Exp. Return [%] 22.30 18.32 13.93 8.91 4.13

Std. Dev. [%] 8.35 6.60 4.95 3.15 1.45

VaR [%] -1.80 -1.41 -1.08 -0.71 -0.34

CASH [%] 0.02 0.04 15.64 45.01 74.22

CORB [%] 8.60 27.21 30.07 20.57 10.12

GOVB [%] 0.02 0.03 0.03 0.03 0.03

GOLD [%] 0.01 0.02 0.02 0.03 0.02

COMM [%] 0.01 0.01 0.01 0.02 0.02

MSCI [%] 15.63 23.88 24.27 16.15 7.48

SP500 [%] 75.71 48.81 29.96 18.19 8.11
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Figure 5.4: Based on bootstrapped scenarios, five optimization runs with different CVaR
limits, according to the 10-day return distribution for a confidence level of 95%, result in different
10-day return distribution. The lower the risk limit is, the more narrow is the return distribution.
Additionally, the expected returns decrease with more restrictive risk limits.
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In Figure 5.5, Figure 5.6 and Figure 5.7 the optimization path of the asset weights for different

CVaR levels is visualized. The search starts with an equally weighted portfolio as it was specified

with w0 in Section 3.3.2.5. The optimization iteration is the number of steps until the algorithm

finds the maximized expected return with the specified CVaR risk constraints. As shown in

Table 5.6 and Table 5.7, the search path visualization also demonstrates that with increasing

the risk level, the riskier assets, in this case the equity assets, are allocated more. If there is

a lower bound defined, as described in Section 3.3.2.3, the optimization tries to find a solution

with respect to these additional constraints. In Figure 5.7 the consequence of a lower bound

constraint of 5% for all assets in the portfolio is visualized. The CVaR levels of -0.5% and -1.5%

for the 10-day return distribution of the bootstrapped scenarios are chosen to demonstrate the

optimization path.
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Figure 5.5: The search path visualizes how the algorithm finds the optimal weights for the
maximum expected return with the given constraints. In this case, the CVaR level of -0.5% of
the 10-day return distribution, based on the scenarios of the bootstrapping method, is shown.
Because of the low risk level, mainly cash is allocated.
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Figure 5.6: The search path visualizes how the algorithm finds the optimal weights for the
maximum expected return with the given constraints. In this case, the CVaR level of -1.5% of
the 10-day return distribution, based on the scenarios of the bootstrapping method, is shown.
Because the risk level is higher than in Figure 5.5, only 15% of the portfolio is allocated to cash.
The equity assets (MSCI, SP500) and the corporate bond asset (CORB) share the majority of
the remaining portfolio weight.
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Figure 5.7: The search path visualizes how the algorithm finds the optimal weights for the
maximum expected return with the given constraints. In this case, the CVaR level of -1.5% of
the 10-day return distribution, based on the scenarios of the bootstrapping method, is shown.
In this scenario, there is a lower bound constraint of %5 for all assets. This means that the
algorithm needs to allocate a minimum of %5 for an asset in the portfolio.
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Figure 5.8: The optimization path of the annualized expected return for the CVaR level of
-1.5% of the 10-day return distribution and a confidence level of 95%.

In Figure 5.8 the optimization path of the expected return for the CVaR level of -1.5% of the

10-day return distribution and a confidence level of 95% is visualized. One can see that the

algorithm starts with a relatively low value, increases the value, decreases it, and increases it

again until the maximum expected return is found after about 35 iterations. By comparing the

search paths for the asset weights, one can see that the search path of the expected value has

the opposite deviation. The reason for this is that the algorithm allocates more equity, and thus

more cash during the several iteration in the optimization search path, which directly influences

the value of the expected return.

As demonstrated in Figure 5.9, when the simulation and the optimization for a specified risk

level is run multiple times, the optimization algorithm allocates the assets so that the defined

CVaR limit is not exceed. The equally weighted portfolios are not only more risky, but they

also have lower expected returns.
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Figure 5.9: Comparison between optimized portfolios (red) and equally weighted portfolios
(blue). The optimization algorithm allocates portfolios so that a maximum expected return is
the objective with the constraint that a certain risk limit is not exceeded. In this case the risk
limit, defined as CVaR of -1.0% of the 10-day return distribution with a confidence level of 95%.
The return is the annualized mean of the expected 10-day return.

5.4 Brute-Force Optimization

To compare and analyze the results from the CVaR optimization approach, a brute-force ap-

proach is used in which a grid of weight combinations are generated to allocate the scenarios.

The generation of the weight combination is implemented in Matlab with the function weights.

It returns a matrix W with the dimensions nCombinations-by-nAssets (see Equation 5.1). The

rows are defined by wci, . . . , wCN where c is the combination index, C the number of combina-

tions, and N the number of assets. Every row has a sum of 1.
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The Matlab implementation of the weights functions is:

function W = weights(nAssets , nCombinations)

W=rand(nCombinations , nAssets );

rowsums=repmat(sum(W, 2), 1, size(W, 2));

W=W./ rowsums;

end

which returns a grid of weight combinations W in the form:

W =



a1 a2 . . . aN

c1 w11 w12 . . . w1N

c2 w21 w22 . . . w2N
...

...
...

. . .
...

cC wC1 wC2 . . . wCN

 (5.1)

Like the optimization approach of Rockafellar and Uryasev, the brute-force method requires

generated scenarios. We use the Monte Carlo simulation, described in Section 5.2.3, which

generates 1’000 10-day arithmetic returns for each asset in the portfolio. The portfolios P are

then constructed by the matrix multiplication of the weight combinations W and the returns r:

P = r ∗W T (5.2)

In the matrix P in which every column represents a portfolio that weights the returns r to the

according weight combination of W . P has the form:

P =



P1 P2 . . . PC

r11 r21 . . . rC1

r12 r22 . . . rC2
...

...
. . .

...

r1N r2N . . . rCN

 (5.3)

The portfolios, generated with the brute-force method, are represented in Figure 5.10 with

annualized expected return and CVaR for the 10-day return distribution and a confidence level

of 95%. The colored circles mark the portfolios with the highest annualized expected return for

the different CVaR levels, defined in Table 5.7 and Table 5.7. The portfolios are on the efficient

frontier and their expected return is similar to the portfolio allocations, optimized with the

approach of Rockafellar and Uryasev. However, because the expected return of the brute-force
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generated portfolios is lower, one can see that the Rockafellar and Uryasev optimization works

more efficient and with better results.
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Figure 5.10: Brute-force generated portfolios with annualized expected return and CVaR for
the 10-day return distribution for the confidence level of 95%. The colored circles mark the
portfolios with the highest annualized expected return for the different CVaR levels, defined in
Table 5.7 and Table 5.7.

By analyzing the 10-day return distribution for different CVaR limits, one can see in Figure 5.11

that the brute-force optimization has similar results to the Rockafellar and Uryasev optimization.

Low risk limits have a more narrow return distribution than portfolios with a higher risk limit,

and the expected return grows when then risk limit is increased.
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Figure 5.11: Based on Monte Carlo scenarios, a brute-force optimization with different CVaR
limits, according to the 10-day return distribution for a confidence level of 95%, results in
different 10-day return distributions. The lower the risk limit is, the more narrow is the return
distribution. Additionally, the expected returns decrease with more restrictive risk limits.





Chapter 6

IT Architecture

From a global bank perspective, not only the implementation of the portfolio optimization

but also the integration in an IT system landscape, which supports a sophisticated investment

process, is of major concern. This chapter focuses on how the investment process conceptually

works and how the portfolio optimization, elaborated and implemented in Chapter 3, can be

integrated into this investment process from an IT architecture perspective.

6.1 Investment Process

Financial portfolios of private or institutional clients16 are constructed and maintained within

a structured investment process, as illustrated in Figure 6.1, containing the following steps:

1. Gathering Client Requirements

2. Strategic Asset Allocation: Definition of benchmarks with long-term assumptions (1-5

years)

3. Tactical Asset Allocation: Allocation of markets and generic asset classes in short-term

views (3–6 months)

4. Portfolio Management: Selection and optimization of investment instruments (monthly,

weekly or daily)

5. Reporting and Monitoring

16Institutional clients are organizations which pool large sums of money and invest those sums in investment
assets. Typically institutional investors are banks, insurance companies, pension funds, hedge funds and mutual
funds.
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Figure 6.1: A sophisticated investment process is divided into several steps, which cover
the gathering of client requirements, a strategic asset allocation, a tactical asset allocation, a
portfolio management (portfolio engineering), and reporting and monitoring. Source: Credit
Suisse [25].

It is a philosophic question which step of the investment process the most responsible for the

portfolio performance is. Studies show that the performance is mainly driven by strategic and

tactical portfolio allocation (step 2 and 3) [23]. However, a portfolio is composed of instruments

and, therefore, the portfolio engineering (step 4) needs an elaborated portfolio optimization

method to control the risks. How the bank’s investment process should look like and which tools

and methods are used, needs to be defined on a strategic bank level, and is the responsibility

of the chief investment officer (CIO)17.

6.2 High Level Architecture

Next, we consider an IT architecture for the portfolio management (step 4 in Section 6.1). This

includes a description of the portfolio management process, a high level system overview, and

a description of the interfaces for the corresponding down- or upstream systems18.

6.2.1 Portfolio Management Process

The IT system, as shown in Figure 6.2, reflects the process of portfolio management where

investment analysts enter their forecasts (e.g., capital-market assumptions, key drivers, and

mega trends) into the system. The system provides several forms for the different forecasts

factors19 which is typically updated after investment committee meetings (e.g., every two weeks).

Relationship managers have the task to inform, discuss, and agree together with the client

investment objectives, risk tolerance, and the desired investment universe.

17The chief investment officer usually oversees a team of professionals that has responsibilities such as managing
and monitoring investment activity, working with analysts and researchers. They develop short-term and long-
term investment policies.

18From an application’s perspective, upstream data flows away from the application. Conversely, downstream
traffic flows into the application.

19Forecasts factors can be used to manage market forecasts, e.g., for equity, fixed-income
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Finally, portfolio managers construct and maintain portfolios according to the inputs of the

investment analysts and the relationship managers. They need to take care that strategic

and tactical investment specifications, defined by the chief investment office, are considered.

After all required information is entered, the portfolios are ready to be optimized either by

a mean-variance approach or by the shortfall risk optimization approach of Rockafellar and

Uryasev, implemented in Chapter 3. Both optimization approaches use the entered information

of investment analysts, relationship managers, portfolio managers as well as the historical market

data of underlying assets in the portfolio to calculate an optimized asset allocation.

The selection of the optimization approach depends on the preference of the portfolio managers,

who can also optimize portfolios with both optimization approaches and compare the asset allo-

cations. The scenarios for the optimization can either be generated by a Monte Carlo simulation

from a model or by bootstrapping from historical returns. As we have seen in Chapter 2 and

Chapter 3, the optimization approach of Rockafellar and Uryasev can also handle non-normal

return distributions where it prefers positive skewness, small kurtosis and low variance.

Investment Analyst Portfolio Manager

Client 

Expectations

Key Drivers 

and Megatrends

Mandate

Asset 

Allocation

Portfolio

Capital Market 

Assumptions

Mean-Variance Optimization
• Markowitz approach

Shortfall Risk Optimization
• Rockafeller & Uryasev approach

Relationship Manager

Simulations
• Monte Carlo Simulation
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Figure 6.2: The portfolio management process is reflected in the target IT architecture. It
provides a multi-user environment for investment analysts, relationship managers, and portfolio
managers. The inputs are the client expectations, key drivers and mega trends, and capital
market assumptions. The portfolio manager can choose between two optimization approaches
(shortfall risk optimization and mean-variance optimization) to calculate optimal asset alloca-
tions. The simulation of future prices of the financial assets underlying the portfolio is either
done with Monte Carlo simulation or with bootstrapping. Both simulation methods use histor-
ical market data as input.



56 Chapter 6 IT Architecture

6.2.2 System Overview

Figure 6.3 represents the system with its infrastructural components20. The application is

structured into three layers: graphical user interface (GUI), business logic (BL), and data

management (DM). Furthermore functional components allow the separation of concerns and a

deployment according to the underlying infrastructural components.

Graphical User Interface

Dispatcher

DatabaseBatch Job Server Market Data

Server Farm - Mean-Variance
Optimization

Server Farm - Shortfall Risk
Optimization

Figure 6.3: A dispatcher distributes optimization requests from the portfolio managers to the
corresponding parallel computation server. A central database stores the market data, which
is updated on a daily basis. It also stores the mandates, portfolios, and asset allocations which
serve as input for the portfolio optimization, calculated on the corresponding server farm.

The design allows a server farm21 per optimization approach (mean-variance and shortfall risk

optimization). A dispatcher component distributes the incoming optimization requests from

the portfolio managers to the specific parallel computing server. The implementation of the

Rockafellar and Uryasev optimization with linear programming (see Section 3.2) allows the

parallelization of the optimization problem. This means that the optimization algorithm can

be deployed as a core component to several parallel computing servers with installed LP solvers

(e.g., Cplex, Xpress). This allows the simultaneous optimization of large portfolios with a

very large number of scenarios.

20Infrastructural components are application servers, databases, user computers, etc.
21Parallel computing application servers



Chapter 6 IT Architecture 57

The required data for the optimization is retrieved from a central database which contains in-

vestment forecasts, mandates, portfolios, constraints, historical market data. A batch job server

ensures a daily update of market data of popular providers (e.g., Bloomberg, Thomson Datas-

tream). In addition, the batch job server is also able to trigger nightly portfolio optimizations

or the re-balancing of portfolios (e.g., at the end of month).

The GUI component is deployed on corresponding user computers. A role concept allows the

investment analysts, relationship managers, and portfolio managers to use the same graphical

user interface with different views and functionality. Relationship managers are responsible for

the client and mandate settings, while investment analysts enter their forecasts about financial

markets, and portfolio managers construct, maintain, and optimize their portfolios. Addition-

ally, a user based security concept prevents the access to data of other users.

6.2.3 Interfaces

The bespoke system is connected to downstream and upstream systems. This means that

several interfaces provide the exchange of information to and from the system (see Figure 6.4).

In the context of the portfolio management system, the market data providers are downstream

systems. Several web-service interfaces are used to retrieve market data by the different market

data providers in order to store it in the central system database with a unified format. After

the system has calculated the asset allocations, the information has to be sent by a system

interface to the trading desk, which is responsible for the trading of the according instruments

on a financial market (e.g., stock exchange). Furthermore, there is also an interface to export

performance reports for clients or for quality and risk departments.

Portfolio Management Trading DeskMarket Data Providers

Reporting

Figure 6.4: Interfaces allow the daily update of market data, retrieved from external mar-
ket data providers. Further, interfaces can be used to export reports for clients or quality
departments, and to send optimized asset allocations to the trading desk.





Chapter 7

Conclusion and Outlook

7.1 Conclusion

The elaboration of the approach of Rockafellar and Uryasev shows that the central element of

their approach is a derived CVaR function which is independent of the VaR function. VaR

has not to be calculated first, but it will be calculated and optimized simultaneously with

the optimization of the asset allocation. Additionally, their CVaR function can be linearized

which allows the implementation with linear programming techniques. This makes it a very

efficient optimization method that is able to optimize very large portfolios with a large number

of scenarios with relatively small computational resources. In contrast to the mean-variance

approach, which penalizes returns equally to losses, the optimization approach of Rockafellar

and Uryasev focuses on the shortfall risk which means it prefers a positive skewness, a small

kurtosis, and a low variance.

It was demonstrated with two simulation methods that the approach of Rockafellar and Uryasev

provides valid results. The examples have relatively low dimensions and are used for illustrative

purposes. For the present thesis, the optimization was implemented with Matlab. However,

because of the linear programming feature, it can also be implemented with a popular LP solver

(e.g., Cplex, Xpress) which solves the the problem more efficiently. Since linear programming

problems can be parallelized, a server farm, equipped with LP solvers, enables the optimization

of a large number of portfolios with a large number of simulations simultaneously. The proposed

IT architecture allows the integration of the elaborated approach of Rockafellar and Uryasev

into an established investment process of a bank. The demonstrated target system can be

used by different user roles to provide a defined process of portfolio management with mean-

variance as well as with the optimization approach of Rockafellar and Uryasev. With its defined

workflow and interfaces the system architecture allows a daily update of market data, sending
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the optimized portfolio allocations to the trading desk, and generate specified reports for clients

as well as for quality departments.

7.2 Outlook

The current thesis serves as an implementation guide for portfolio optimization for constrained

shortfall risks with linear programming techniques. As shown, the optimization approach of

Rockafellar and Uryasev is integrated into an IT architecture that is part of a sophisticated in-

vestment process. However, the approach of Rockafellar and Uryasev allows the implementation

of additional constraints (e.g., transaction costs, liquidity constraints) which could considered

in a more enhanced implementation as the one proposed in the present thesis. Additionally,

further studies could compare the performance of the Rockafellar and Uryasev approach to the

mean-variance optimization with a monthly re-balancing of a portfolio over the past decade

where the performances of the two optimization approaches, during recent financial crisis, is of

major concern.



Appendix A

Matlab Code

The implementation of the Rockafellar and Uryasev optimization approach and the correspond-

ing analysis for the current thesis is done with Matlab R2014a. The code is implemented with

functions and scripts. The functions accept input arguments and produce output. They are

called from several scripts and are used to reduce code duplications and increase usability.

A.1 Functions

A.1.1 Optimization Algorithm

function [w, fval , exitflag , output , history] = optcvarmaxr(r, beta , CVaRLimit ,

UB, LB , showPath , showIter)

% Sizes

[nSims , nAssets] = size(r);

% Inequality constraints

A1 = [zeros(1, nAssets) 1 1/(1- beta )*1/ nSims*ones(1,nSims )];

A2 = -r;

A3 = -ones(nSims , 1);

A4 = -eye(nSims , nSims );

A = [A2 A3 A4];

A = [A1; A];

b = [-CVaRLimit zeros(1, nSims )];

b = b’;

% Equality constraints --> sum of weights has to be 100%

Aeq = [ones(1, nAssets) zeros(1, nSims +1)];

beq = [1];

61



Appendix A. Matlab Code Appendix A Matlab Code

% Upper and lower bounds

UB = [repmat(UB, 1, nAssets) +Inf*ones(1, nSims +1)];

LB = [repmat(LB, 1, nAssets) zeros(1, nSims +1)];

% Initial weights and initial VaR

w0 = [(1/ nAssets )*ones(1, nAssets )];

VaR0 = quantile(r*w0’, beta);

w0 = [w0 VaR0 zeros(1, nSims )];

% Objective function

objfun = @(w) -mean(r(:,1: nAssets ))*w(1: nAssets)’;

% Optimization

options = optimoptions(@fmincon ,’Algorithm ’,’interior -point’);

options = optimoptions(options ,’MaxFunEvals ’ ,100000);

if(showIter)

options = optimoptions(options ,’Display ’,’iter’);

end

if(showPath)

[w, fval , exitflag , output , history] = fminconpath(objfun , w0, A, b, Aeq , beq , LB, UB, options );

else

[w, fval , exitflag , output] = fmincon(objfun , w0, A, b, Aeq , beq , LB, UB, [], options );

history = [];

end

end

A.1.2 Optimization Path

function [w, fval , exitflag , output , history] = fminconpath(objfun , w0, A, b, Aeq , beq ,

LB, UB , options)

history.x = [];

history.fval = [];

options = optimoptions(options ,’OutputFcn ’,@outfun );

[w, fval , exitflag , output] = fmincon(objfun , w0, A, b, Aeq , beq , LB, UB, [], options );

function stop = outfun(x, optimValues , state)

stop = false;

switch state

case ’init’

case ’iter’

% Concatenate current point and function value with history

history.fval = [history.fval; optimValues.fval];

history.x = [history.x; x];

case ’done’

otherwise

end

end

end
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A.1.3 Correlated Asset Paths

function [S] = gbmcorr(SO, mu, sig , corr , dt, nSteps , nSims)

nAssets = length(SO);

drift = mu - sig .^2/2;

R = chol(corr);

S = nan(nSteps+1,nAssets ,nSims );

for idx = 1:nSims

W = randn(nSteps , nAssets );

corrW = W*R;

S(:,:,idx) = [ones(1,nAssets ); cumprod(exp(repmat(drift*dt ,nSteps ,1)

+corrW*diag(sig)*sqrt(dt )))]* diag(SO);

end

end

A.1.4 Boostrapping

function [periodReturns] = bootstrap(R, nDays , nSims)

nAssets = size(R,2);

periodReturns = nan(nSims , nAssets );

for iSim = 1: nSims

dReturns = [ones(1, nAssets ); nan(nDays , nAssets )];

for day = 1:nDays

pos = randi(length(R));

dReturns(day+1, :) = R(pos , :)+1;

end

prices = cumprod(dReturns );

periodReturns(iSim , :) = (prices(end ,:) - prices (1 ,:))./ prices (1 ,:);

end

end

A.1.5 Weight Combinations

function W = weights(S0, nWeightCombis)

nAssets = size(S0, 2);

W=rand(nWeightCombis ,nAssets );

rowsums=repmat(sum(W,2),1,size(W,2));

W=W./ rowsums;

end

A.1.6 VaR

function [VaR] = varconf(r, confLvl)

VaR = quantile(r, 1 - confLvl ); % e.g. 1 - 0.9 = 0.1

end
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A.1.7 CVaR

function [CVaR] = cvar(r, VaR)

nAssets = size(r, 2);

CVaR = nan(1, nAssets );

for iAsset = 1: nAssets

rWi = r(:,iAsset );

CVaR(iAsset) = mean(rWi(rWi < VaR(iAsset )));

end

end

A.1.8 Returns of Simulated Prices

function [r] = sims2ret(S)

nAssets = size(S, 2);

nSims = size(S, 3);

r = nan(nSims , nAssets );

for iSim = 1: nSims

paths = squeeze(S(:,:,iSim ));

rSim = (paths(end ,:) - paths (1 ,:))./ paths (1 ,:);

r(iSim ,:) = rSim;

end

end

A.1.9 Prices to Returns

function r = price2sret(p)

r = zeros(size(p,1)-1, size(p ,2));

for i = 2:size(p,1)

r(i-1, :) = (p(i, :) - p(i-1, :)) ./ p(i-1, :);

end

end

A.1.10 Normalize Prices

function [dates , prices] = normPrices(marketdata , normPrice)

dates = marketdata (:, 1);

nTradingDays = size(marketdata , 1);

startPrice = marketdata(round(nTradingDays /2), 2:end);

prices = [];

for cIdx = 1:7

prices(:, cIdx) = marketdata (:, cIdx +1) ./ startPrice (1, cIdx) * normPrice;

end

end
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A.1.11 Plot Histogram

function [] = plothist(fig , data , t, xl , yl)

figure(fig)

x = data;

[hts ,ctrs] = hist(x ,100);

bh = bar(ctrs ,hts ,’hist’);

set(bh , ’facecolor ’, [0.5 0.5 1]);

area = sum(hts) * (ctrs(2)-ctrs (1));

xx = linspace(min(x), max(x));

hold on;

plot(xx ,area*normpdf(xx,mean(x),std(x)),’b’, ’Linewidth ’, 2)

f = ksdensity(x,xx);

plot(xx ,area*f,’r-’, ’Linewidth ’, 2)

legend(’Histogram ’, ’Normal Distribution ’, ’Approximated Distribution ’)

title(t);

xlabel(xl);

ylabel(yl);

grid on;

hold off

A.1.12 Plot CCDF

function [] = ccdf(fig , data , data2 , xl , yl, t)

figure(fig)

[f, xx] = ecdf(data);

plot(xx , 1-f, ’red’)

hold on;

if (isempty(data2) == 0)

[f2 , xx2] = ecdf(data2);

plot(xx2 , 1-f2, ’blue’)

end

xlabel(xl);

ylabel(yl);

title(t);

grid on;

hold off;

end

A.1.13 Portfolios for Weight Combinations

function [P] = portfolios(W, r)

P = r * W’;

end
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A.2 Scripts

A.2.1 Visualize Historical Prices

Prices = xlsread(’Prices_126.xlsx’);

[dates , prices] = normPrices(Prices , 100);

prices;

figure (11);

plot(dates , prices , ’LineWidth ’, 2)

grid on;

datetick(’x’,’dd.mm.yy’);

ylabel(’Price [%]’);

title(’Asset Prices ’);

axis tight;

legend(’CASH’, ’CORB’, ’GOVB’, ’GOLD’, ’COMM’, ’MSCI’, ’SP500 ’);

hold off;

A.2.2 Monte Carlo Simulation

% Load prices

if(isempty(Prices ))

Prices = xlsread(’Prices_126.xlsx’);

end

% Initialize model

tDaysY = 252;

lookback = 126; % 252 trading days / 2 = 126 --> 126 / 7 = 18

p0 = Prices(end -lookback:end , 2:end);

r0 = price2sret(p0); % get daily returns from prices

% Generate random correlated paths

S0 = ones(1, size(Prices ,2) -1);

nSims = 1000; % number of simulations

dt = 1/ tDaysY; % time steps --> days

nSteps = 10; % days to expiry

S = gbmcorrhist(S0 , r0 , dt , nSteps , nSims);

% Calculate total returns from generated asset paths for the specific period

r = sims2ret(S);

corr_r = corrcoef(r)
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A.2.3 Bootstrapping

% Load prices

if(isempty(Prices ))

Prices = xlsread(’Prices_126.xlsx’);

end

% Initialize model

tDaysY = 252;

lookback = tDaysY /2; % 252 trading days / 2 = 126 --> 126 / 7 = 18

p0 = Prices(end -lookback:end , 2:end);

r0 = price2sret(p0); % get daily returns from prices

S0 = ones(1, size(Prices ,2) -1);

nSims = 1000; % number of simulations

days = 10; % days to expiry

r = bootstrap(r0, days , nSims);

corr_r = corrcoef(r)

A.2.4 Optimization with CVaR Constraints

% Optimize portfolio weights for maximum return for a given risk limit

beta = 0.95; % Confidence level ?%

UB = 1.00;

LB = 0.00;

CVaRLimit = -2.50 % -2.5% loss in 10 trading days with confidence level = 95 %

% CVaRLimit = -2.00 % -2.0% loss in 10 trading days with confidence level = 95 %

% CVaRLimit = -1.50 % -1.5% loss in 10 trading days with confidence level = 95 %

% CVaRLimit = -1.00 % -1.0% loss in 10 trading days with confidence level = 95 %

% CVaRLimit = -0.50 % -0.5% loss in 10 trading days with confidence level = 95 %

CVaRLimit = CVaRLimit / 100;

showPath = true % true = show optimization path

showIter = true; % true = show optimization iterations

[w, fval , exitflag , output , history] = optcvarmaxr(r, beta , CVaRLimit , UB, LB , showPath , showIter );

% Display solver output

exitflag

output

% Values at optimal cvar - portfolio

nAssets = size(r, 2);

wOpt = w(1: nAssets)’;

wOpt_p = wOpt * 100

R_Opt = -fval;

VaR_rOpt = -w(nAssets +1);

% Equally Weighted Portfolio
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wEq = [(1/ nAssets )*ones(1, nAssets )]’;

rEq = r * wEq;

mu_rEq = mean(rEq)

sig_rEq = std(rEq);

VaR_rEq = varconf(rEq , 0.95);

CVaR_rEq = cvar(rEq , VaR_rEq)

% Optimal Portfolio

rOpt = r * wOpt; % daily return vector of portfolio

sig_rOpt = std(rOpt);

CVaR_rOpt = cvar(rOpt , VaR_rOpt)

if(isempty(CvarVsReturnOpt ))

CvarVsReturnOpt = [CVaR_rOpt_p R_Opt_p ];

CvarVsReturnEq = [CVaR_rEq_p mu_rEq_p ];

else

CvarVsReturnOpt = [CvarVsReturnOpt; CVaR_rOpt_p R_Opt_p ];

CvarVsReturnEq = [CvarVsReturnEq; CVaR_rEq_p mu_rEq_p ];

end

% Display search path

if (isempty(history) == 0)

weightsHistory = history.x(:, 1: nAssets) * 100;

plotdata(2, weightsHistory , ’area’,

’Optimization Iterations ’,

’Asset Weights [%]’, ’Search Paths for Optimal Portfolio Weights ’);

rHistory = -history.fval * (252/10) * 100; % annualize expected return history

plotdata(4, rHistory , ’plot’,

’Optimization Iterations ’,

’Return [%]’, ’Search Path for Optimal Portfolio Return ’);

plothist(6, rOpt * 100,

’Distribution of the 10-day Returns of the Optimized Portfolio ’,

’Return [%]’, ’Frequency (out of 1000) ’);

figure (21)

[f, xi] = ksdensity(rOpt * 100);

plot(xi , f, ’b’, ’Linewidth ’, 2)

axis([-4, 4, 0, 1.4]);

title(’Distribution of the 10-day Returns of the Optimized Portfolio ’);

xlabel(’Return [%]’);

ylabel(’Density ’);

legend(’CVaR Limit = -2.5%’, ’CVaR Limit = -2.0%’,

’CVaR Limit = -1.5%’, ’CVaR Limit = -1.0%’, ’CVaR Limit = -0.5%’);

grid on;

hold on;

end
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A.2.5 Brute-Force Analysis

% Generate weight combinations

W = weights(S0 , 1000);

% Generate portfolios with different weight combinations

P = portfolios(W, r);

sizeR = size(r)

sizeP = size(P)

% Measure

mu = mean(P);

sig = std(P);

VaR = varconf(P, 0.95);

CVaR = cvar(P, VaR);

% Values at optimal CVaR Portfolio

maxCVaR = max(CVaR)

iMaxMuCVaRLevel = find(CVaR == maxCVaR );

maxCVaR_VaR = VaR(iMaxMuCVaRLevel)

maxCVaR_mu = mu(iMaxMuCVaRLevel)

maxCVaR_W = W(iMaxMuCVaRLevel , :)

maxCVaR_r = P(:, iMaxMuCVaRLevel );

maxCVaR_sig = sig(iMaxMuCVaRLevel );

% Values at optimal VaR Portfolio

maxVaR = max(VaR)

iMaxVaR = find(maxVaR == VaR);

maxVaR_mu = mu(iMaxVaR)

maxVaR_W = W(iMaxVaR , :)

% Values at optimal Variance Portfolio

minSig = min(sig)

iMinSig = find(sig == minSig );

minSig_mu = mu(iMinSig)

minSig_W = W(iMinSig , :)

minSig_r = P(:, iMinSig );

% Search Portfolio with Max Return and a certain CVaR limit

mu = mu * 100;

CVaR = CVaR * 100;

level = -2.50; % percent

[maxMuCVaRLevel_1 , cvarMaxMu_1 , sigMaxMu_1 , rMaxMu_1]

= portcvarlevel(level , CVaR , sig , mu, P);

level = -2.00; % percent

[maxMuCVaRLevel_2 , cvarMaxMu_2 , sigMaxMu_2 , rMaxMu_2]

= portcvarlevel(level , CVaR , sig , mu, P);

level = -1.50; % percent

[maxMuCVaRLevel_3 , cvarMaxMu_3 , sigMaxMu_3 , rMaxMu_3]

= portcvarlevel(level , CVaR , sig , mu, P);

level = -1.00; % percent
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[maxMuCVaRLevel_4 , cvarMaxMu_4 , sigMaxMu_4 , rMaxMu_4]

= portcvarlevel(level , CVaR , sig , mu, P);

level = -0.50; % percent

[maxMuCVaRLevel_5 , cvarMaxMu_5 , sigMaxMu_5 , rMaxMu_5]

= portcvarlevel(level , CVaR , sig , mu, P);

% Annualize Mu

mu = mu * (252 / 10);

plotdataxy (8, CVaR , mu , ’CVaR [%]’,

’Return [%]’, ’Generated Portfolios with Brute -Force Method ’,

’bx’, cvarMaxMu_1 , maxMuCVaRLevel_1 , cvarMaxMu_2 , maxMuCVaRLevel_2 ,

% Max Return

maxMu = max(mu)

iMaxR = find(mu == maxMu)

maxR_r = P(:, iMaxR );

plothist (10, rMaxMu_5 * 100,

’Distribution of Daily Returns of Optimal Portfolio ’,

’Return [%]’, ’Frequency (out of 1000) ’);

figure (31)

[f, xi] = ksdensity(rMaxMu_5 * 100);

plot(xi , f, ’b’, ’Linewidth ’, 2)

axis([-4, 4, 0, 2.0]);

title(’Distribution of the 10-day Returns of the Optimized Portfolio ’);

xlabel(’Return [%]’);

ylabel(’Density ’);

legend(’CVaR Limit = -2.5%’, ’CVaR Limit = -2.0%’,

’CVaR Limit = -1.5%’, ’CVaR Limit = -1.0%’, ’CVaR Limit = -0.5%’);

grid on;

hold on;
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